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1. Introduction

The goal of this chapter is to prove the following theorem, which is known as
the Special BAB. All contents in this chapter are based on [1, Section 5].

Theorem 1.1. (Special BAB, [1, Theorem 1.4]) Let d ∈ N and ε, δ ∈ R>0.
Consider projective varieties X satisfying:

• (X,B) is ε-lc of dimension d for some boundary B,
• B is big and KX +B ∼R 0, and
• the coefficients of B are at least δ.

Then the set of such X forms a bounded family.

Hacon and Xu, [3, Theorem 1.3], proved Theorem 1.1 assuming the coefficients
of B belong to a fixed DCC set of rational numbers, relying on the special case
when −KX is ample [2, Corollary 1.7]. We will need their result in the proof of
the theorem. To be specific, we will show that KX has a klt n-complement. The
theorem can be viewed as a special case of the Borisov–Alexeev–Borisov conjecture.
In fact, if we take δ = 0 in Theorem 1.1, it is equivalent to the Borisov–Alexeev–
Borisov conjecture, which is the main theme of this book.

Now, we briefly explain the idea of the proof of Theorem 1.1.

• Run a (−KX)-MMP and take the canonical model, by applying Theorem
3.1 ([3, Theorem 1.3]), we reduce to the case that X is Fano.

• By Theorem 3.2 ([2, Theorem 1.6]), we only need to show the log birational
boundedness of (X,B).

• By Proposition 4.2 of Chapter 4, | −mKX | defines a birational map for
some m depending only on d. In order to show the log birational bound-
edness, we can apply Lemma 3.1 of Chapter 4. The only remain thing is
to show that vol(−KX) is bounded from above.

• Finally, in order to show that vol(−KX) is bounded from above, the idea
is to construct isolated non-klt centers by −KX . In fact, if vol(−KX) is
large enough, then we can construct an effective Q-divisor ∆ ∼Q −aKX

where a ∈ Q>0 is sufficiently small, so that (X,∆) has a non-klt center
G containing x. By Shokurov-Kollár connectedness principle [4, 17.4],
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the dimension of G is positive. Then we can use the method similar to
the proof of Proposition 4.1 of Chapter 4 to conclude an upper bound of
vol(−KX).

The last part is the most technical result in this chapter.

Proposition 1.2. Let d ∈ N, and ε, δ ∈ R>0. Then there is a number v
depending only on d, ε, δ such that for any X as in Theorem 1.1, vol(−KX) < v.

2. Boundedness of volumes

In this section we will prove Proposition 1.2.

Proof of Proposition 1.2. Take a > 0 to be the real number such that
vol(−aKX) = (4d)d + 1. It suffices to prove that a is bounded from below.

Step 1. Reduce to the case when X is Fano of dimension d ≥ 2 and B is a
Q-boundary.

When d = 1, the proposition clearly holds. We may assume that d ≥ 2. Let
X ′ → X be a Q-factorialization. Note that X ′ is of Fano type. Running a (−KX′)-
MMP, we get a (−K)-minimal model Xmin. Since B is big, −KXmin

is nef and big.
By the Basepoint-free Theorem (cf. [7, Theorem 3.3]), −KXmin is semiample, and
defines a birational contraction Xmin → Xcan, where −KXcan is ample. By Exercise
4.1, (Xcan, Bcan) is ε-lc. By Exercise 4.2, vol(−KX) = vol(−KXcan

) = (−KX)d,
hence by replacing (X,B) by (Xcan, Bcan), we may assume that X is Fano. In
particular, a ∈ Q>0. Moreover, by modifying B, we may assume that B is a
Q-boundary (cf. Exercise 4.3).

Step 2. Construct a family of non-klt centers G, such that vol(−KX |G) is bounded
from above.

Fixed a smooth point y′ ∈ X, since vol(−a2KX) > dd, by [6, 6.1], we may
find ∆1 ∼Q −a2KX , such that multy′∆1 > d, and (X,∆1) is not lc at y′. Since

vol(−a2KX) > (2d)d, by [1, 2.31(2)] (see Section 1 of Chapter 9), there is a bounded
family of subvarieties of X such that for a general point x in X, there is a member G
of the family and an effective Q-divisor ∆2 ∼Q −a2KX such that (X,∆2) is lc near
x with a unique non-klt place whose center contains x and that center is G. Here
we always consider general x such that x 6∈ Supp(∆1), hence (X,∆ := ∆1 + ∆2) is
lc near x with a unique non-klt place whose center contains x and that center is G.
Recall that this family is given by finitely many morphisms V j → T j of projective
varieties with surjective morphisms V j → X and G is a general fiber of one of
V j → T j , and we can assume that for each j the points on T j corresponding to
the G are dense.

Denote k := max{dimV j − dimT j}. We show that a is bounded from below
by the induction on k. When k = 0, then G = {x} is an isolated non-klt center and
x, y′ belong to two disconnected non-klt centers. By Shokurov-Kollár connectedness
principle [4, 17.4], −(KX + ∆) ∼ −(1 − a)KX cannot be ample. Hence a ≥ 1.
Now we may assume that k > 0, let b ∈ N to be the smallest number such that
vol(−bKX |G) ≥ dd + 1 for all general G with dimG > 0. We can assume that
the equality is obtained for G which are general fibers of the morphism V j → T j

for some j. By [1, 2.31(2)] (see Section 1 of Chapter 9), after replacing a by
a+ b and replacing ∆, we can replace each family of G with a family of centers of
strictly smaller dimensions. By the induction, we may assume that a+ b > 2µ for
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some µ > 0 depending only on d, ε, δ. We may assume that a < µ, otherwise we are
done. Therefore b ≥ µ. From now on, we consider general G as a general fiber of the
morphism V j → T j and by the construction, vol(−KX |G) = 1

bk
(dd+1) ≤ 1

µd (dd+1)

which is bounded from above.

Step 3. Construct a bounded family.

Take F to be the normalization of G. By [1, Theorem 3.10] (see Section 2 of
Chapter 9) and the ACC for log canonical thresholds [2, Theorem 1.1], there is an
effective Q-divisor ΘF with coefficients in a DCC set Φ depending only on d such
that we may write

(KX + ∆)|F ∼R KF + ∆F = KF + ΘF + PF ,

where PF is pseudo-effective. By increasing a and adding to ∆, we may assume
that PF is effective and big. Since G is general, by [1, Lemma 3.12] (see Section
2 of Chapter 9), we may write KX |F = KF + ΛF for some sub-boundary ΛF such
that (F,ΛF ) is sub-ε-lc and ΛF ≤ ΘF ≤ ∆F .

By [1, Proposition 4.9] (see Proposition 4.2 of Chapter 4), there exists a natural
number m depending only on d, ε, δ, such that | −mKX | defines a birational map.
Take φ : W → X, AW , RW , ∆m as in Notation 3.2 of Chapter 4. Take a log
resolution f : F ′ → F of (F,∆F ) such that the induced map F ′ 99K W (which is
well-defined since G is general) is a morphism. Denote AF ′ := AW |F ′ which is base
point free and defines a birational map on F ′. Denote M := 1

δB, MF := M |F .
Note that mδf∗MF ∼R (AW +RW )|F ′ ≥ AF ′ .

Take ΣF ′ to be the sum of the strict transform of Supp(MF + ΘF ), and f -
exceptional divisors. Fix a rational number ε′ ∈ (0, ε) such that ε′ < min Φ>0. By
the definition of Φ, Supp(ΘF ) ≤ ΘF

ε′ . Note that by [1, Lemma 3.11], Supp(MF ) ≤
ΘF +MF since the coefficients of M are at least 1. Recall that by [1, Lemma 2.46],
KF ′ + (2k + 1)AF ′ is big (see Section 3 of Chapter 2). Hence

vol(KF ′ + ΣF ′ + 2(2k + 1)AF ′)

≤ vol(KF ′ + ΣF ′ + 2(2k + 1)AF ′ + ε′
−1

(KF ′ + (2k + 1)AF ′))

≤ vol(KF + ΣF + 2(2k + 1)AF + ε′
−1

(KF + (2k + 1)AF ))

≤ vol((1 + ε′
−1

)KF + Supp(MF ) + Supp(ΘF ) + (2 + ε′
−1

)(2k + 1)AF )

≤ vol((1 + ε′
−1

)KF + ΘF +MF + ε′
−1

ΘF + (2 + ε′
−1

)(2k + 1)AF )

≤ vol((1 + ε′
−1

)(KF + ΘF + PF ) + δ−1(−KX |F )

+m(2 + ε′
−1

)(2k + 1)(−KX |F ))

≤ vol(((1 + ε′
−1

)(a− 1) + δ−1 + (2 + ε′
−1

)(2k + 1)m)(−KX |F )),

where AF and ΣF are the strict transforms of AF ′ and ΣF ′ on F respectively.
Hence by Step 2, vol(KF ′ + ΣF ′ + 2(2d + 1)AF ′) ≤ v1 for a number v1 depending
only on d, ε, and δ.

Now we may apply Lemma 3.1 of Chapter 4 to

(Y,C,D,Z,HZ) = (F,Supp ΘF ,mδMF , F
′, AF ′)

to construct a log bounded family P of couples such that there exists a couple
(F ,ΣF ) ∈ P satisfying the following.

• F is birational to F , (F ,ΣF ) is log smooth,
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• ΣF consists of the support of MF + ΘF and divisors exceptional over F ,
• the coefficients of MF are bounded from above by a number, say u, de-

pending only on d, ε, and δ.

Here we may take a higher model of F ′ such that the induced map g : F ′ 99K F is
a morphism, MF := g∗f

∗MF , and ΘF := g∗f
∗ΘF .

Step 4. Apply Proposition 2.1 of Chapter 4.

We may assume that a < 1. Then −(KX + ∆) ∼Q −(1 − a)KX is ample.
By Shokurov-Kollár connectedness principle [4, 17.4], the non-klt locus of (X,∆) is
connected. By the construction, since x is not contained in Supp(∆1), (X,∆) is not
lc at y′ with a non-klt center not equal to G. By Shokurov-Kollár connectedness
principle again, (X,∆) has a non-klt center intersecting G, but not equal to G. By
[1, Lemma 3.14], we can choose PF ≥ 0 such that (F,∆F ) is not ε

2 -lc. Since (F,ΛF )
is sub-ε-lc, (F,∆F + (∆F − ΛF )) is not klt by the discrepancy computation.

Now since (X,B) is ε-lc and G is general, by [1, Lemma 3.12] (see Section
2 of Chapter 9), there is a sub-boundary BF on F such that (F,BF ) is sub-ε-lc,
KF +BF = (KX +B)|F ∼Q 0 and BF = ΛF +B|F . Moreover,

BF + 2(∆F − ΛF ) = ∆F + (∆F − ΛF ) +B|F ,
and hence (F,BF +2(∆F −ΛF )) is not klt. In addition, KF +BF +2(∆F −ΛF ) ∼Q
−2aKX |F is ample. Write

KF +BF := g∗f
∗(KF +BF ).

Then by Exercise 6.4 of Chapter 4, (F ,BF + 2g∗f
∗(∆F − ΛF )) is not sub-klt and

by Exercise 4.1, (F ,BF ) is sub-ε-lc.
Since ΛF ≤ ΘF , we have

Supp(B>0
F ) ⊂ Supp(ΘF +B|F ) = Supp(ΘF +MF )

which implies that Supp(B>0
F

) ⊂ ΣF . Applying Proposition 2.1 of Chapter 4 to the

sub-pair (F ,BF ), L = 2g∗f
∗(∆F − ΛF ) and L̃ = 2aδMF ∼Q L, there is a positive

real number λ ∈ R>0 depending only on ε,P such that 2aδu > λ, which implies
that a > λ

2uδ . �

3. Proof of the special BAB

The following special case of [3, Theorem 1.3] will be used to reduce Theorem
1.1 to the Fano case.

Theorem 3.1 ([3, Theorem 1.3]). Let d,m ∈ N. Consider projective varieties
X satisfying:

• (X,B) is klt of dimension d for some boundary B,
• B is big and KX +B ∼Q 0, and
• mB is an integral Weil divisor.

Then the set of such X forms a bounded family.

According to the following theorem, in order to prove Theorem 1.1, it suffices
to show the log birational boundedness.

Theorem 3.2 ([2, Theorem 1.6]). Let d ∈ N and δ, ε ∈ R>0. Consider the set
of log pairs (X,∆) such that

• (X,∆) is ε-lc,
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• KX + ∆ is ample, and
• the coefficients of ∆ are at least δ.

If the set of such (X,∆) is log birationally bounded, then it is log bounded.

Proof of Theorem 1.1. Let X ′ → X be a Q-factorialization. Running a
(−KX′)-MMP, we get a (−K)-minimal model Xmin. Since B is big, −KXmin

is
nef and big. By the Basepoint-free Theorem (cf. [7, Theorem 3.3]), −KXmin is
semiample, and defines a birational contraction Xmin → Xcan, where −KXcan is
ample. Denote by Bcan the birational transform of B on Xcan. Note that KXcan

+
Bcan ∼R 0 and (Xcan, Bcan) is again ε-lc by Exercise 4.1.

If the set of such Xcan is bounded, then there is a natural number n, such that
−nKXcan

is Cartier (cf. Exercise 4.4). Moreover, by the Effective Basepoint-free
Theorem [5], we may assume that −nKXcan is base point free. This implies that
there is a klt n-complement of KXcan , which in turn gives a klt n-complement of
KX (cf. Exercise 4.5). Hence by Theorem 3.1, X forms a bounded family.

Finally, in order to show the boundedness of Xcan, we show that (Xcan, Bcan)
forms a log bounded family. We may take ∆can = (1 + t)Bcan for some sufficiently
small t > 0, such that (Xcan,∆can) is ε

2 -lc where KXcan
+ ∆can ∼Q −tKXcan

is
ample. By Theorem 3.2, it suffices to prove that (Xcan,∆can) forms a log bira-
tionally bounded family, or equivalently, (Xcan, Bcan) is log birationally bounded.
By Proposition 4.2 of Chapter 4 and Proposition 1.2, there exist m ∈ N and v
depending only on d, ε, and δ, such that | −mKXcan

| defines a birational map and
vol(−KXcan

) < v. Take φ : W → Xcan, AW , RW as in Notation 3.2 of Chapter 4.
Write ΣW to be the support of φ−1

∗ Bcan and all φ-exceptional divisors, then

vol(KW + ΣW + 2(2d+ 1)AW )

≤ vol(KXcan + φ∗ΣW + 2(2d+ 1)φ∗AW )

≤ vol(KXcan
+ δ−1Bcan + 2(2d+ 1)φ∗AW )

≤ vol(−(δ−1 + (4d+ 2)m)KXcan)

≤(δ−1 + (4d+ 2)m)dv.

Now we may apply Lemma 3.1 of Chapter 4 to

(Y,C,D,Z,HZ) = (Xcan, 0,mBcan,W,AW )

to finish the proof. �

4. Exercises

Exercise 4.1. Let (X,B) be an ε-lc pair and KX + B ≡ 0. If g : W →
X,h : W → Y are two birational contractions, then h∗g

∗(KX + B) is sub ε-lc. In
particular, if f : X 99K X ′ is a birational contraction, then (X ′, f∗B) is also ε-lc.

Exercise 4.2. Let f : X 99K Y be a D-non-positive birational contraction
between normal projective varieties. Show that vol(D) = vol(f∗D).

Exercise 4.3. Let (X,B) be an ε-lc pair such that KX + B ≡ 0. Then for
any ε′ ∈ (0, ε), we may find a Q-divisor B′, such that (X,B′) is an ε′-lc pair and
KX +B′ ∼Q 0.

Exercise 4.4. Suppose that X belongs to a bounded family P and X is projec-
tive with klt singularities. Then there is a natural number n depending on P, such
that nKX is Cartier.
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Exercise 4.5. Let f : X 99K Y be a (−KX)-non-positive birational contraction
between normal projective varieties. If KY has a klt n-complement for some natural
number n, show that KX also has a klt n-complement.
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